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a b s t r a c t

We study the influence of vertical high-frequency and small-amplitude vibrations on the separation of a
binary mixture saturating a shallow horizontal porous layer heated from below. The monocellular flow
obtained for a separation ratio w > wmono > 0 leads to a migration of the species towards the two vertical
boundaries of the cell. The 2D direct numerical simulations and the linear stability analysis of the aver-
aged governing equations show that the vertical vibrations delay the transition from monocellular flow to
multicellular flow. The vibrations also decrease the value of wmono, which allows species separation for a
wide variety of binary mixtures.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The problem under consideration concerns the interaction be-
tween two phenomena: Soret-driven convection and thermo-
vibrational convection in a porous medium.

In binary fluid mixtures subjected to temperature gradients, the
thermodiffusion effect induces a mass fraction gradient. In addition
to the usual expression for the mass flux J given by the Fick law, an
additional part proportional to the temperature gradient is consid-
ered so that:

J ¼ �qDrC � qCð1� CÞDTrT ð1Þ

where D is the mass diffusion coefficient, DT the thermodiffusion
coefficient, q the density, and C the mass fraction of the denser
component.

Thermogravitational diffusion is the combination of two phe-
nomena: convection and thermodiffusion. The coupling of these
two phenomena leads to species separation.

In 1938, Clusius and Dickel [1] successfully carried out the
separation of gas mixtures in a vertical cavity heated from
the side (thermogravitational column, TGC). During the follow-
ing years, two fundamental theoretical and experimental works
on species separation in binary mixtures by thermogravitation
were published. Furry et al. [2] (FJO theory) developed the the-
ory of thermodiffusion to interpret the experimental processes
ll rights reserved.

: +33 561 55 8555.
of isotope separation. Subsequently, many works appeared,
aimed at justifying the assumptions or extending the results
of the theory of FJO to the case of binary liquids [3]. Other
works were related to the improvement of the experimental de-
vices to increase separation. Lorenz and Emery [4] proposed the
introduction of a porous medium into the cavity. Platten et al.
[5] used an inclined cavity, keeping the hot plate on the top,
to increase separation.

Elhajjar et al. [6] used a horizontal cavity heated from above
with temperature gradients imposed on the horizontal walls to
improve the separation process with the use of two control
parameters.

Double-diffusive convection caused by temperature and con-
centration gradients in a porous medium has been widely studied
due to its numerous fundamental and industrial applications. Some
examples of interest are the migration of moisture in fibrous
insulation, the transport of contaminants in saturated soil, drying
processes or solute transfer in the mushy layer during the solidifi-
cation of binary alloys. A review of the recent works in this field is
given by Nield and Bejan [7]. Soret-driven convective effects can-
not be neglected in many industrial processes. Sovran et al. [8]
studied the onset of Soret-driven convection in an infinite horizon-
tal porous layer. For a cell heated from below and for a positive
separation ratio w > 0 they showed that the first primary bifurca-
tion is a stationary one. Using a regular perturbation method, in
the case of long wave disturbances (i.e. k = 0), they found the
set of critical parameters Rac = 12/(Lew), kc = 0 for w P wmono =
1/[(40/51)Le � 1].
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Nomenclature

A aspect ratio of the cavity
a thermal diffusivity of the mixture a = k*/(qc)f

b amplitude of vibrations (m)
C mass fraction of the denser component of the mixture
Ci initial mass fraction of the denser component of the

mixture
D* mass diffusion coefficient (m2/s)
Da Darcy number Da = K/H2

D�T thermodiffusion coefficient (m2/s K)
H height of the cavity (m)
k wave number
kc critical wave number for the bifurcation from the equi-

librium solution
kc2 Critical wave number associated with transition from

monocellular to multicellular flow
K permeability of the porous medium (m2)
L width of cavity (m)
Le Lewis number Le = a/D*

P pressure of fluid (Pa)
Pr Prandtl number Pr = (t(qc)f)/k*

Ra thermal Rayleigh number Ra = [KHgbTDT(qc)f]/(k*m)
Rac critical Rayleigh number associated with transition from

equilibrium solution to monocellular flow
Rac2 critical Rayleigh number associated with transition from

monocellular to multicellular flow
R R = (b-2)/g
Rv Rv = (Ra2R2B)/(2(B2x2 + 1))

T temperature (K)
S separation
t nondimensional time
t0 dimensional time (s)
V velocity of the flow (m/s)
u and v velocity components (m/s)

Greek symbols
w separation ratio
e normalized porosity
q density of the mixture (kg/m3)
- dimensional frequency
bT thermal expansion coefficient (1/K)
bC mass expansion coefficient
r temporal amplification of perturbation
wmono separation ratio beyond which flow at onset of convec-

tion is monocellular
x nondimensional frequency of vibrations
k* effective thermal conductivity of the porous medium-

mixture system (W/m K)
(qc)f volumetric heat capacity of the mixture (J/m3 K)
(qc)* volumetric heat capacity of porous medium-mixture

system (J/m3 K)
e* porosity of porous medium
m kinematic viscosity of mixture (m2/s)
xc2 critical frequency associated with transition from

monocellular to multicellular flow
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Many works have been devoted to thermo-vibrational convec-
tion in porous media. Khallouf et al. [9] considered a square differ-
entially heated cavity filled with a porous medium saturated by a
pure fluid and subjected to linear harmonic oscillations in the ver-
tical direction. In their study, the authors used a Darcy–Boussinesq
model and a direct formulation. In the case of a horizontal porous
layer saturated by a pure fluid, heated from below or from above,
Zen’kovskaya and Rogovenko [10], Bardan and Mojtabi [11], used
the Darcy model including the non-stationary term and adopted
the time-averaged equations formulation to study the influence
of high-frequency, small-amplitude vibrations on the onset of con-
vection. They found that vertical vibrations stabilize the rest solu-
tion. Charrier Mojtabi et al. [12] investigated the influence of
vibrations on Soret-driven convection in a horizontal porous cell
heated from below or from above. They showed that the vertical
vibrations had a stabilizing effect while the horizontal vibrations
had a destabilizing effect. Thermo-vibrational convection in a fluid
medium has received more attention than thermo-vibrational con-
vection in a porous medium (Gershuni et al. [13], Gershuni and
Lyubimov [14], etc.). It is well known that high-frequency acceler-
ations induced by crew activities in microgravity platforms (g-jit-
ter), can produce drastic disturbances during the experiments in
space as, for instance, in solidification processes during which
mushy zones, modeled as porous media, are produced. The g-jitter,
which can be represented by a unidirectional harmonically oscil-
lating small-amplitude acceleration field (Alexander [15]), leads
to a non-zero mean flow which may have an important effect on
the average heat transfer. High-frequency vibrations can also
significantly alter earth-bound experiments. In the case of weight-
lessness, only the specific thermo-vibrational mechanism is
responsible for instabilities. Under a gravity field, both thermo-
vibrational and thermo-gravitational mechanisms occur. All these
previous works show that it is important to study the control of
convective motions by vibration effects either (i) in a single con-
stituent or a binary fluid or (ii) in a porous medium saturated by
a single constituent or a binary fluid. Gershuni et al. [16,17], ana-
lyzed the stability of mechanical quasi-equilibrium or mechanical
equilibrium of a binary mixture horizontal layer subjected to a ver-
tical temperature gradient, under a high-frequency vibrational
field, when Soret-effect is taken into account. Recently, Shevtsova
et al. [18] produced a benchmark of numerical solutions of the
vibrational convection problem with Soret effect in a cubic rigid
cell filled with water (90%) and isopropanol and subjected to a
temperature gradient between two opposite lateral walls. In the
present paper, we use the same formulation as the one used by
Charrier Mojtabi et al. [12] for a shallow porous cavity saturated
by a binary mixture and heated from below. We verify that it is
possible to carry out the species separation of a binary mixture
in this geometrical configuration, and that the vibrations can be
used to delay the loss of stability of the monocellular flow, which
allows separation at a higher Rayleigh number. We consider the
case of high-frequency, small-amplitude vibrations, so that a for-
mulation using time-averaged equations can be used. The results
of the linear stability analysis of the mechanical equilibrium and
the monocellular flow in an infinite porous layer heated from be-
low, in the case of a separation ratio w > wmono > 0, are corrobo-
rated by the direct numerical simulations.

2. Mathematical formulation

We consider a rectangular cavity with aspect ratio A = L/H,
where H is the height of the cavity along the vertical axis and L
is the width along the horizontal axis. The aspect ratio is assumed
infinite in the stability analysis. The cavity is filled with a porous
medium saturated by a binary fluid for which the Soret effect is ta-
ken into account. The impermeable horizontal walls are kept at dif-
ferent, uniform temperatures: T1 for z = 0 and T2 for z = H, with
T1 > T2. The vertical walls (x = 0, x = L) are impermeable and adia-
batic. All the boundaries are assumed rigid. The cavity is subjected
to linear harmonic oscillations in the vertical direction (amplitude
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b and dimensional frequency -). For the governing equations, we
adopt the Boussinesq approximation and Darcy equation for which
the non-stationary term is taken into account.

We set all the properties of the binary fluid constant except the
density q in the buoyancy term, which depends linearly on the lo-
cal temperature and mass fraction:

q ¼ qr 1� bT T � Trð Þ � bC C � Crð Þ½ � ð2Þ

where qr is the fluid mixture density at temperature Tr and mass
fraction Cr. bT and bC are the thermal and concentration expansion
coefficients, respectively.

When we consider the referential related to the oscillating sys-
tem, the gravitational field g is replaced by g + b-2 sin(-t0)ez

where ez is the unit vector along the vertical axis (vibration axis)
and t0 the dimensional time.

Thus the dimensionless governing conservation equations for
mass, momentum, energy and chemical species, where the Soret
effect is taken into account are:

r:V ¼ 0
B oV

ot þ V ¼ �rP þ RaðT þ wCÞð1� R sinðxtÞÞez

oT
ot þ V:rT ¼ r2T

e oC
ot þ V:rC ¼ 1

Le r
2C �r2T

� �
ð3Þ

where B = Da(qc)f/[(qc)*ePr] is the inverse of the Vadasz number
(B = 1/Va)and R = b-2/g. Da = K/H2 is the Darcy number and K the
permeability of the porous medium. The reference scales are H for
the length, H2/(k*/(qc)*) for the time (where k* and (qc)* are,
respectively, the effective thermal conductivity and volumetric
heat capacity of the porous medium), a/H for the velocity with
a = k*/(q c)f (a is the effective thermal diffusivity), D T = T1 � T2 for
the temperature and DC ¼ �DTCið1� CiÞD�T=D� for the mass fraction
where Ci, D�T, D* are the initial mass fraction, the thermodiffusion
and the mass diffusion coefficients of the denser component,
respectively. The dimensionless temperature and mass fraction
are respectively defined by : T = (T* � T2)/DT, C = (C* � Ci)/DC.

The dimensionless boundary conditions are:

T ¼ 1 for z ¼ 0; T ¼ 0 for z ¼ 1; oT
ox ¼ oC

ox ¼ 0 for x ¼ 0;A;

rC � n ¼ rT � n for z ¼ 0;1; V � n ¼ 0 8M 2 oX
ð4Þ

The problem under consideration depends on eight
non-dimensional parameters: the thermal Rayleigh number,
Ra = K gbTHDT (qc)f/(k*t), R = b-2/g, the separation ratio
w ¼ �ðbT=bcÞðD�T=D�Þ Cið1� CiÞ, the Lewis number Le = a/D*, the nor-
malized porosity e = e*(qc)f/(qc)* (where e* is the porosity), the
dimensionless frequency x, the aspect ratio A and the factor B.

In the momentum equation the term BoV/ot is usually neglected
since B is of order 10�6. However, in our problem, high-frequency
vibrations cause very large accelerations, making it necessary to
consider this non-stationary term [10].

3. The averaged equations

In the limiting case of high-frequency and small-amplitude
vibrations, the averaging method can be applied to study thermal
vibrational convection [14]. According to this method, each field
(V, P, T, C) is subdivided into two parts: the first part varies slowly
with time (i.e. the characteristic time is large with respect to the
period of the vibrations) and the second one varies quickly with
time (i.e. the characteristic time is of the order of magnitude of
the vibrational period):

V ¼ V�ðtÞ þ u0ðxtÞ; P ¼ P�ðtÞ þ p0ðxtÞ; T ¼ T�ðtÞ þ h0ðxtÞ;
C ¼ C�ðtÞ þ c0ðxtÞ
Here, V*,P*,T*,C* are the averaged fields (i.e. the mean value of the
field calculated over the period s = 2p/x) of the velocity, pressure,
temperature and mass fraction. The decoupling between the pulsa-
tional parts of the velocity and the pressure is obtained by using a
Helmhotz decomposition of (T* + wC*)ez.

(T* + wC*)ez = W +rn where W is the solenoidal part of
(T* + wC*)ez satisfying r �W = 0.

Thus the averaged flow equations are:

r:V� ¼ 0
B oV�

ot þ V� ¼ �rP� þ Ra T� þWC�ð Þez þ Rv W � rT� þW
e� rC�

� �h i
ez

oT�
ot þ V� � rT� ¼ r2T�

e oC�
ot þ V� � rC� ¼ 1

Le r
2C� � r2T�

� �

T� þ wC�ð Þez ¼Wþrn; r �W ¼ 0

ð6Þ

In addition to the boundary conditions (4) applied to the mean
fields, we consider: W�n = 0 on oX.

The modified vibrational Rayleigh number
Rv = (Ra2R2B)/(2(B2 x2 + 1)) characterizes the intensity of the
vibrations.

4. Linear stability of the equilibrium solution in an infinite
horizontal porous layer

The stability of the equilibrium solution was studied by
Charrier-Mojtabi et al. [12]. They restricted their study to the case
Le = 2 for which the fluid considered is in the gaseous state, and so
the Dufour effect should be taken into account. We extended this
study to the case of a high Lewis number and we focused on the
transition from the equilibrium solution to the monocellular
flow obtained for binary mixtures with positive separation ratio:
w > wmono > 0.

This problem admits a mechanical equilibrium solution charac-
terized by:

V�0 ¼ 0; T�0 ¼ 1� z; C�0 ¼ cst � z; W ¼ 0 ð7Þ

In order to analyze the stability of this conductive solution, we
introduced the perturbation of the vertical velocity component w,
the perturbation of the vertical component of W, w2, and the pertur-
bations of temperature,h, and concentration, c. We assumed that the
perturbations (w, w2, h, c) were small.

We introduced a new function g = c � h, in order to more easily
take into account the boundary conditions on h and c at z = 0 and 1.

The linear stability equations were solved using the 4th order
Galerkin method.

For w > 0 the first bifurcation is stationary. The factor B was set
to 10�6 and e = 0.5. For Le = 100 we determined the bifurcation dia-
grams, Rac = f(w) and kc = f(w), where Rac and kc are respectively
the critical thermal Rayleigh number and the critical wave number
in the infinite horizontal direction. The results are illustrated in
Figs. 1 and 2, for the case Le = 100, e = 0.5 and for Rv = 0,10,50.
For a layer heated from below, it can be noted that Rac increases
with Rv whereas kcs decreases with Rv. For w > 0, when Rv in-
creases, the value wmono of the separation ratio beyond which the
critical wave number vanishes (i.e. kc = 0), decreases. Table 1 shows
the influence of vibrations (Rv) on wmono. We note that wmono de-
creases and becomes close to 0 when Rv increases. For Le = 100,
we obtain wmono = 0.0129 without vibration and wmono = 0.0033
for Rv = 100. This value of w is very small and most binary liquids
have a separation ratio higher than this value. So, by adding vibra-
tions, we can use the horizontal cell to separate most binary mix-
tures. Using a regular perturbation method in the case of long wave
disturbances (i.e.k = 0), we showed that, for w > wmono, the first pri-
mary bifurcation is a stationary one and the critical thermal Ray-
leigh number is: Rac = 12/(Lew) "Rv. Furthermore, we noticed



Fig. 1. Critical Rayleigh number at the onset of convection versus separation ratio
for Le = 100, B = 10�6, and e = 0.5.

Fig. 2. Critical wave number at the onset of convection versus separation ratio for
Le = 100, B = 10�6, and e = 0.5.

Table 1
Effect of vibrations on the value of the separation ratio wmono beyond which the flow
at the onset of convection becomes monocellular for e = 0.5, B = 10�6

Rv wmono for Le = 100 wmono for Le = 30

0 0.0129 0.0444
10 0.0077 0.0257
20 0.0062 0.0205
30 0.0054 0.0177
40 0.0048 0.0159
50 0.0044 0.0146
60 0.0041 0.0136
70 0.0039 0.0128
80 0.0037 0.0121
90 0.0035 0.0115

100 0.0033 0.0110

Fig. 3. Separation versus RaLew for Rv = 50. (RaLew)opt = 24.
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that when the vibrational Rayleigh number, Rv, increased, the va-
lue of the separation ratio wmono beyond which the wave number
kc = 0 decreased. To conclude, vertical vibrations have a stabilizing
effect on the convective motions whereas they do not modify the
value of Rac for the flow associated with the long wave mode (i.e.
kc = 0). The same results can be observed in a horizontal binary
fluid layer [16].

5. Analytical solution of the monocellular flow

In the case of a shallow cavity A� 1, we considered the parallel
flow approximation used by Cormack et al. [19]. The basic flow, de-
noted with a subscript 0, is then given as follows:

V0 ¼ U0ðzÞex; T0 ¼ bxþ f ðzÞ; C0 ¼ mxþ gðzÞ; W0 ¼W10ðzÞex ð8Þ

For the stationary state, when the above mentioned assumptions
are made and the corresponding boundary conditions are consid-
ered, we obtain the velocity, temperature and concentration fields:

T0 ¼ 1� z
U0 ¼ Ram Wð1=2� zÞ
C0 ¼ mxþ m2RaLeW 3z2 � 2z3

� �� �
=12� z

� m2RaLeW
� �

=24þ ð1�mAÞ=2

m ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð10LeRaW� 120Þ

p
=ðLeRaWÞ

W10 ¼ ðbþ wmÞð1=2� zÞ

8>>>>>>>>><
>>>>>>>>>:

ð9Þ

The expressions obtained for the velocity, the temperature and the
concentration fields are similar to those obtained in [20]. This
means that the basic state, corresponding to the monocellular flow,
is independent of the high-frequency and small-amplitude
vibrations.

The separation, S = mA, is defined as the difference in mass frac-
tion of the denser component in the vicinity of the left and the
right vertical walls of the cell. Then the maximum separation is ob-
tained for Ra = 24/(LeW). This value is denoted Raopt.

Fig. 3 presents the separation value versus RaLew obtained ana-
lytically and numerically for an arbitrary moderate chosen value of
Rv that does not destabilize the monocellular flow. We verified
numerically, solving the averaged Eqs. (6) for Rv = 50, that the
monocellular flow remains stable and leads to the exact separation
value obtained analytically with Eq. (9). It can be seen that the sep-
aration has a maximum corresponding to the optimal coupling be-
tween thermodiffusion and convection. For small values of the
Rayleigh number, the convection is weak and the separation is
mainly caused by thermodiffusion. For high values of the Rayleigh
number, the convection is strong and the flow increases the mixing



Table 2
Effect of vibrations on the critical values of Rayleigh number Rac2, wave number kc2

and frequency xc2 associated with transition from monocellular to multicellular flow
for Le = 30, e = 0.5, B = 10�6 (order 4 Galerkin method)

Rv Rac2 kc2 xc2

0 31.48 2.84 2.21
10 36.51 2.63 2.25
20 40.96 2.45 2.25
30 44.98 2.30 2.24
40 48.67 2.18 2.23
50 52.08 2.08 2.21
60 55.28 2.00 2.20
70 58.28 1.92 2.18
80 61.12 1.86 2.17
90 63.83 1.81 2.16

100 66.41 1.76 2.15

Table 3
Effect of vibrations on the critical values of Rayleigh number Rac2, wave number kc2

and frequency xc2 associated with transition from monocellular to multicellular flow
for Le = 100, e = 0.5, B = 10�6 (order 4 Galerkin method)

Rv Rac2 kc2 xc2

0 27.67 3.04 1.44
10 32.29 2.81 1.43
20 36.44 2.61 1.40
30 40.21 2.44 1.37
40 43.67 2.3 1.34
50 46.88 2.18 1.32
60 49.88 2.08 1.30
70 52.70 2.00 1.28
80 55.37 1.92 1.26
90 57.91 1.86 1.25

100 60.33 1.81 1.24
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of the species leading to a small separation. It can be noted that,
due to the reference scale used for the concentration field, the sep-
aration S may be higher than 1.

6. Linear stability analysis of the monocellular flow

We studied the stability of the monocellular solution in order to
confirm that the species separation could occur in a horizontal por-
ous cell heated from below. For this study, we write the governing
equations using the perturbations of the velocity v, temperature h,
pressure p, mass fraction c, and solenoidal field w:

v ¼ V � V0; h ¼ T � T0; c ¼ C � C0; p ¼ P � P0;

w ¼W�W0:

The second-order terms are neglected; we obtain the linear equa-
tions where the unknown functions are the perturbations.

To take the boundary conditions for temperature and concen-
tration at z = 0 and 1 into account more easily, we introduce the
new variable g = c � h.

The disturbances are developed in normal modes (w,h,g,w2) =
(w(z), h(z),g(z),w2(z))e(Ikx+rt) and we obtain the following equation
system:

ðBrþ1Þ D2�k2
� �

wþRak2ðhð1þWÞþWgÞþRv kIDw2mðw=eÞ½

þw2k2 DT0þ w=eð ÞDC0ð ÞþW10Ik3ðð1þw=eÞhþðw=eÞgÞ
i
¼0

D2�k2
� �

h�rhþw� IkU0h¼0

ð1=LeÞIk D2�k2
� �

g� erIkðgþhÞþk2U0ðgþhÞþmDw� IkwDC0 ¼0

D2�k2
� �

w2þk2ðð1þwÞhþwgÞ¼0

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð10Þ

where D = o/oz, k is the horizontal wave number, r = rr + Iri is the
temporal amplification of the perturbation, I2 = �1, w is the vertical
component of the velocity and w2 the vertical component of w.

The corresponding boundary conditions are:

w ¼ 0; h ¼ 0;
og
oz
¼ 0;w2 ¼ 0 at z ¼ 0;1 ð11Þ

The resulting linear problem is solved using the 4th order Galerkin
method. The perturbation quantities are chosen as follows:

wðzÞ ¼
XN

i¼1

ai sinðipzÞ; hðzÞ ¼
XN

i¼1

bi sinðipzÞ;

gðzÞ ¼
XN�1

i¼0

ci cosðipzÞ; w2ðzÞ ¼
XN

i¼1

di sinðipzÞ

The critical values of the Rayleigh number and the wave number
were obtained for a stationary and a non-stationary bifurcation.
For the values of w and Le studied, the critical Rayleigh number
leading to stationary bifurcation is always higher than the one lead-
ing to Hopf bifurcation. So, in this study, we focus on the values of
the critical wave number kc2, the critical Rayleigh number Rac2 and
the critical frequency xc2 related to the Hopf bifurcation. The re-
sults of linear stability analysis for Le = 30 and Le = 100 and for
w = 0.1 are presented in Tables 2 and 3. It can be observed in these
two tables that the vibrations have a stabilizing effect and lead to an
increase in the critical value of the thermal Rayleigh number. So the
vibrations can be used to maintain the monocellular flow and then
allow the separation of the binary mixture components over a wide
range of thermal Rayleigh number. But it should be noted that the
separation value decreases for the high values of Ra. It should be
mentioned that vibrations reduce the critical wave number kc2

and the Hopf frequency xc2. This means that vibrations can also
be used to decrease the number of convective cells at the transition
from the monocellular flow to the multicellular flow.

7. 2D numerical simulations

The averaged equations (Eq. 6) with the associated boundary
conditions were solved using the finite element method and the
spectral collocation method. The influence of vibrations on the on-
set of convection was investigated for a cell of aspect ratio A = 20
for Le = 30 and Le = 100, e = 0.5, (B is fixed to 10�6).

7.1. Stability of the equilibrium solution

It was observed that the critical parameters of the bifurcations
differed very little between the case A = 20 and the case of a cell
of infinite horizontal extension. A structured mesh 150 � 30 was
used for the finite element method for A = 20 and 120 � 20 colloca-
tion points for the spectral method.

For the onset of stationary convection, the results for Le = 30
and Le = 100 are presented below. For Le = 30 and w = 0.03, without
vibrations (Rv = 0), the critical parameters Rac = 12.92, kc = 1.356
are obtained from the linear stability analysis. For the same values
of Le and w but with vibrations (Rv = 10), we obtain Rac = 13.36,
kc = 0 from the linear stability analysis, so the critical wave number
is zero, which means that the flow at the onset of convection is
monocellular. To confirm this result, we used the direct numerical
simulation to study the case Le = 30 and w = 0.03 for a value of Ra
close to the critical value (Ra = 13.5) first without vibration (Rv = 0)
and then with vibrations (Rv = 10). Fig. 4(a) shows the streamlines
and isoconcentrations for Rv = 0. In this case, the flow is multicel-
lular and we cannot use the horizontal cell to separate the compo-
nents of a binary mixture. Fig. 4(b) shows the streamlines and
isoconcentrations for the same values of all parameters but with



Fig. 4. Streamlines and isoconcentrations for Le = 30, w = 0.03, Ra = 13.5 (a) Rv = 0 (without vibration) (b). Rv = 10. A multicellular flow is obtained at the transition from the
equilibrium solution for Rv = 0, whereas a monocellular flow is obtained for Rv = 10.
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vibrations. It can be observed that vibrations modify the structure
of the flow from multicellular to monocellular, leading to the strat-
ification of the concentration field and the separation of the binary
mixture components, but this separation is not very strong because
the value of Ra is close the stability threshold and is far from
Ropt = 24/(Lew). Similar results were obtained for Le = 100 and
w = 0.01 (Fig. 5).

7.2. Stability of the monocellular flow

In the results presented below, the values of B and e were fixed
at 10�6 and 0.5, respectively. As in the previous part, the results for
Le = 30 and 100 are presented.

For Le = 30 we obtain a monocellular flow at the onset of con-
vection for w = wmono = 0.044 if Rv = 0 and for w = wmono = 0.014 if
Fig. 5. Streamlines and isoconcentrations for Le = 100, w = 0.01, Ra = 12.5 (a) Rv = 0 (with
equilibrium solution for Rv = 0, whereas a monocellular flow is obtained for Rv = 10.

Fig. 6. Le = 30, w = 0.1: instantaneous streamline and isoconcentrations at a given ti
(b) Streamline and isoconcentrations for Ra = 31.4, and Rv = 50. The vibrations maintain
Rv = 50. We present here some results for a value of w higher than
these two values. We use w = 0.1. The stability analysis shows that,
without vibrations, the monocellular flow loses its stability, via a
Hopf bifurcation, for the critical parameters Rac2 = 31.48 and
xc2 = 2.84. For the same mixture (w = 0.1) under vibrations charac-
terized by a modified vibrational Rayleigh number Rv = 50, the
monocellular flow loses its stability for Rac2 = 52.08 and
xc2 = 2.21. These results were confirmed by the direct numerical
simulations.

Fig. 6(a) shows the instantaneous streamline and isoconcentra-
tions at a given time during the oscillation for Ra = 31.4. This value
of Ra corresponds to the transition from monocellular flow to mul-
ticellular flow without vibrations (Rv = 0).

Fig. 6(b) shows the streamlines and the isoconcentrations for
the same mixture with the same parameters but with vibrations
out vibration) (b). Rv = 10. A multicellular flow is obtained at the transition from the

me during the oscillation for (a) Ra = 31.4, and Rv = 0 (c) Ra = 52.2 and Rv = 50.
the monocellular flow for a higher value of the Rayleigh number ((a) and (b)).



Fig. 7. Le = 100, w = 0.1: instantaneous streamline and isoconcentrations at a given time during the oscillation for (a) Ra = 27.3, and Rv = 0 (c) Ra = 45.3 and Rv = 50.
(b) Streamline and isoconcentrations for Ra = 27.3, and Rv = 50.
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(Rv = 50). It was noted that, with vibrations, the monocellular flow
could be maintained for a higher value of the Rayleigh number
leading to the separation of the species between the left and the
right vertical walls of the horizontal cell. But this separation is
not very strong because the value of RaLew = 94.2 is far from the
optimal value: 24. This monocellular flow remains stable up to
Ra = 52.2. Fig. 6(c) the instantaneous streamline and isoconcentra-
tions at a given time during the oscillation at the transition from
monocellular flow to multicellular flow (Ra = 52.2) for Rv = 50.

For Le = 100, we observe the same behavior as for the case
Le = 30. As shown in Table 3, for Le = 100, the following critical
parameters are obtained from the linear stability analysis:
Rac2 = 27.67 and xc2 = 1.44 for Rv = 0 and Rac2 = 46.88 and
xc2 = 1.32 for Rv = 50.

Fig. 7(a) shows the instantaneous streamline and isoconcen-
trations at a given time during the oscillation for the transition
from monocellular flow to multicellular flow for Rv = 0. Under
certain conditions, the vibrations lead to a change from multi-
cellular to monocellular flow (Fig. 7(b)). This monocellular flow
remains stable for a Rayleigh number much higher than the
one obtained without vibrations. Thus the vibrations allow sep-
aration for high values of the Rayleigh number. When the Ray-
leigh number is increased slightly, the monocellular flow loses
its stability to give a multicellular flow (Fig. 7(c)). The numer-
ical results are then in good agreement with the analytical
results.

The Hopf bifurcation frequency was found numerically for all
the cases studied. For example for Le = 30, w = 0.1, Ra = 52.2, and
Rv = 50, it was observed that the flow remains oscillatory for all
the computing times considered. The value of the critical frequency
obtained by the linear stability analysis is xc2 = 2.21. Using the
Fourier transform of the horizontal component of the velocity at
one point of the domain, we obtained a numerical critical fre-
quency xc2num = 2.19. For all the cases studied a good agreement
was found between the theoretical and numerical results.

8. Conclusions

The Soret-driven convection in a large aspect ratio horizontal
porous layer, heated from below, saturated by a binary fluid and
subjected to vertical high-frequency vibrations was studied. The
influence of vertical vibrations on the onset of convection and on
the stability of the monocellular flow obtained for particular
ranges of the physical parameters was investigated. We considered
the case of high-frequency, small-amplitude vibrations so that a
formulation using time averaged equations could be used. From
the stability analysis of the rest solution obtained under the effect
of vertical vibrations, it was observed that vertical high-frequency
vibrations had a stabilizing effect on the convective flow. It was
found that vibrations could be used to decrease the value of the
separation ratio beyond which the flow at the onset of convection
became monocellular, allowing separation of the components in
the horizontal cell for a wide range of positive separation-ratio bin-
ary mixtures.

Analytical and numerical techniques were used to study the
stability of the mono-cellular flow obtained, for w P wmono > 0,
when the equilibrium solution lost its stability. The direct nonlin-
ear numerical simulations performed using the finite element
method and the spectral collocation method corroborate the re-
sults of the linear stability analysis and allow the study of the flow
structures which appear after the bifurcation. It was highlighted
that the monocellular flow associated with a stratified concentra-
tion field led to a horizontal separation of the binary mixture com-
ponents. It was observed that vibrations had a stabilizing effect
leading to an increase in the critical value of the Rayleigh number
corresponding to the transition between monocellular and multi-
cellular flow. Thus vertical vibrations allow species separation over
a wider range of Rayleigh numbers. It should also be noted that
vibrations reduce the critical wave number kc2, the Hopf frequency
xc2 and wmono .
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